Inhalt des Dokuments
zur Navigation
Dr.-Ing. Qiang Li
Technische Universität Berlin
Institut für Mechanik
FG Systemdynamik und Reibungsphysik
Sekr. C8-4, Raum M 127
Straße des 17. Juni 135
10623 Berlin
Tel.: +49 (030) 314-22154
Email: qiang.li@tu-berlin.de
1985 | Geboren in V.R. China |
seit 2010 | Wissenschaftlicher Mitarbeiter am FG Systemdynamik und Reibungsphysik der TU Berlin |
2014 | Promotion zum Thema "Simulation von Reibung und Verschleiß mit der Methode der Dimensionsreduktion" an der TU Berlin |
Veranstaltung |
---|
Projekt "Simulation von tribologischen Kontakten" |
Jahr | Titel | Ort |
---|
- Adhesion
Li Q, Pohrt R, Popov VL, Adhesive Strength of Contacts of Rough Spheres, Front. Mech. Eng, 2019, 5:7. https://www.frontiersin.org/article/10.3389/fmech.2019.00007
Li Q, Popov, VL, Adhesive contact between a rigid body of arbitrary shape and a thin elastic coating, Acta Mechanica, 2019, 230 (7):, 2447-2453. https://link.springer.com/article/10.1007/s00707-019-02403-0
Argatov II, Li Q, Popov VL, Cluster of the Kendall-type adhesive microcontacts as a simple model for load sharing in bioinspired fibrillar adhesives, Arch. Appl. Mech., 2019, 89 (8):1447-1472. https://link.springer.com/article/10.1007/s00419-019-01516-1
Li Q, Popov VL, Adhesive contact of rough brushes, Beilstein J. Nanotechnol, 2018, 9: 2405–2412. https://www.beilstein-journals.org/bjnano/articles/9/225
Li Q, Popov VL, Adhesive force of flat indenters with brush-structure, FU Mech Eng, 2018, 16(1): 1-8. https://doi.org/10.22190/FUME171220005L
Li Q, Argatov II, Popov VL, Onset of detachment in adhesive contact of an elastic half-space and flat-ended punches with non-circular shape: analytic estimates and comparison with numeric analysis, J. Phys. D, 2018, 51(14):145601. http://iopscience.iop.org/article/10.1088/1361-6463/aab28b/meta
Popov VL, Pohrt R, Li Q, Strength of adhesive contacts: Influence of contact geometry and material gradients, Friction, 2017, 5(3): 308-325. https://doi.org/10.1007/s40544-017-0177-3
Li Q, Popov VL, On the possibility of frictional damping with reduced wear: A note on the applicability of Archard's law of adhesive wear under conditions of fretting, Phys Mesomech, 2017, 20(5):91-95. doi.org/10.1134/S1029959918010137
Argatov I, Li Q, Pohrt R, Popov VL, 2016, Johnson–Kendall–Roberts adhesive contact for a toroidal indenter, Proc. Royal Soc. A, 472(2191). https://doi.org/10.1098/rspa.2016.0218
- Wear
Li Q, Voll L, Starcevic J, Popov VL. Heterogeneity of material structure determines the stationary surface topography and friction, Sci R, 2018, 8, 14168. https://doi.org/10.1038/s41598-018-32545-5
Li Q, Forsbach F, Schuster M, Pielsticker D, Popov VL, Wear Analysis of a Heterogeneous Annular Cylinder, Lubricants, 2018, 6(1): 28. https://doi.org/10.3390/lubricants6010028
Li Q. Limiting profile of axisymmetric indenter due to the initially displaced dual-motion fretting wear, FU Mech Eng, 2016, 14(1): 55-61.
Li Q, Filipopov AE, Dimaki AV, Chai YS, Popov VL. Simplified simulation of fretting wear using the method of dimensionality reduction. 2014. Phys Mesomech, 17(3): 236-241
- Contact Mechanics
Li Q. On the tensor of tangential stiffness in contact problems, Phys Mesomech, 2017, 20(5): 51-56. https://doi.org/10.1134/S1029959918010071
Li Q, Popov, VL. Indentation of flat-ended and tapered indenters with polygonal geometries, FU Mech Eng, 2016, 14(3):241-249
Willert E, Li Q, Popov VL. The JKR-adhesive normal contact problem of axisymmetric rigid punches with a flat annular shape or concave profiles, FU Mech Eng, 2016: 14 (3), 281-292.
Zhang J, Butz A, Li Q. Simulation of frictional energy dissipation in a fiber contact subjected to normal and tangential oscillation. Phys Mesomech. 2015; 18(4), 52-56.
- Elastomer contact
Li Q, Dimaki AV, Popov M., Psakhie SG, Popov VL. Kinetics of the coefficient of friction of elastomers. Sci R. 2014; 4, 5795
Popov VL, Voll L, Li Q, Chai YS, Popov M. Generalized Law of Friction between elastomers and differently shaped rough bodies. Sci R, 2014, 3, 3750. https://doi.org/10.1038/srep03750
Li Q, Popov M, Dimaki A, Filipopov AE, Kürschner S, Popov VL. Friction between a viscoelastic body and a rigid surface with random self-affine roughness. Phys Rev Lett, 2013, 111(3):034301. https://doi.org/10.1103/PhysRevLett.111.034301
Li Q, Popov M, Dimaki A, et al. Li et al. Reply. Phys Rev Lett, 2013, 111(18): 189402
- Infleuence of oscillations on friction
Zughaibi JM, Schulze FH, Li Q. Critical velocity of controllability of sliding friction by normal oscillations for an arbitrary linear rheology, Phys Mesomech, 2018, 21(4): 371-378. https://doi.org/10.1134/S1029959918040112
Popov M, Li Q. Multi-mode active control of friction, dynamic ratchets and actuators, Phys Mesomech, 2017, 20(5): 26-32. https://doi.org/10.1134/S1029959918010046
Milahin N, Li Q, Starcevic J. Influence of the normal force on sliding friction under ultrasonic oscillations. FU Mech Eng. 2015, 13(11): 27-32.
Milahin N, Li Q. Friction and wear of s spherical indenter under influence of out-of-plane ultrasonic oscillations. Phys Mesomech. 2015, 18(4): 38-41.
Popov M, Li Q, Popov N. Damping in viscoelastic contacts under combined normal and tangential oscillation . AIP Conference Proceedings, 1683, 020187 (2015). dx.doi.org/10.1063/1.4932877
- Numerical Methods in Contact Mechanics
Li Q, Popov VL. Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials, Comput Mech, 2018, 16(3):319-329. https://doi.org/10.1007/s00466-017-1461-9
Pohrt R, Li Q. Complete Boundary Element Formulation for Normal and Tangential Contact Problems. Phy Mesomech 17, 334–340 (2014).
Siehe auch mein Profil bei Google Scholar