Nachtrag:

IV. Lagerreaktionen bei ebener Bewegung

Zur Frage: Unter welchen Bedingungen ist überhaupt die ebene Bewegung eines Starrkörpers möglich?

Annahme: Die x-y-Ebene sei die Bewegungsfläche.

Für die Darstellung der Ortsimpulse in der Körperfesten Basis gilt nach Glg. (68):

\[ L_x \vec{e}_x(t) = (\Theta_{xx} \omega_x + \Theta_{xy} \omega_y + \Theta_{xz} \omega_z) \vec{e}_x(t) \]
\[ L_y \vec{e}_y(t) = (\Theta_{yx} \omega_x + \Theta_{yy} \omega_y + \Theta_{yz} \omega_z) \vec{e}_y(t) \]
\[ L_z \vec{e}_z(t) = (\Theta_{zx} \omega_x + \Theta_{zy} \omega_y + \Theta_{zz} \omega_z) \vec{e}_z(t) \]  \hspace{1cm} (68)

Bei einer Bewegung in der x-y-Ebene gelten \( \omega_x = \omega_y = 0 \)

\[ L = \Theta_{zz} \omega_z \vec{e}_x(t) + \Theta_{yz} \omega_y \vec{e}_x(t) + \Theta_{xz} \omega_x \vec{e}_z(t) \]  \hspace{1cm} (1)

Zeitliche Änderung des Ortsimpulses können aus (1):

\[ \frac{dL}{dt} = \frac{dL'}{dt} + \omega \times L \]

\[ = \begin{pmatrix} \Theta_{xz} \omega_z \\ \Theta_{yz} \omega_z \\ \Theta_{zz} \omega_z \end{pmatrix} + \begin{pmatrix} 0 \\ \omega_z \\ 0 \end{pmatrix} \times \begin{pmatrix} \Theta_{xz} \omega_z \\ \Theta_{yz} \omega_z \\ \Theta_{zz} \omega_z \end{pmatrix} = \begin{pmatrix} \Theta_{xz} \omega_z \omega_z - \Theta_{yz} \omega_z \omega_z \\ \Theta_{yz} \omega_z \omega_z + \Theta_{xz} \omega_z \omega_z \\ \Theta_{zz} \omega_z \omega_z \end{pmatrix} \]  \hspace{1cm} (2)

Gleichung (2) in der Drallsatzformulierung:

\[ \frac{dL}{dt} = H_a = \begin{pmatrix} \Theta_{xz} \omega_z \omega_z - \Theta_{yz} \omega_z \omega_z \\ \Theta_{yz} \omega_z \omega_z + \Theta_{xz} \omega_z \omega_z \\ \Theta_{zz} \omega_z \omega_z \end{pmatrix} \]

\[ \Theta_{xz} \omega_z \omega_z - \Theta_{yz} \omega_z \omega_z = H_x \]
\[ \Theta_{yz} \omega_z \omega_z + \Theta_{xz} \omega_z \omega_z = H_y \]
\[ \Theta_{zz} \omega_z \omega_z = M_z \]  \hspace{1cm} (3)

Aus (3) ist zu erkennen, dass die Deviationsmomente durch Sorgen, dass bei der ebener Bewegung auch (mittlere) Momente um die x- und y-Achse entstehen.
Diese Momente beugen die Lager, was in technischen Systemen häufig unerwünscht ist. In der Rotordynamik versucht man durch Anwendung der Rotationskörpers die Lagerkräfte zu minimieren. Dazu werden kleine Zentimeter geeignet angebracht, um die Drehmomente zu minimieren bzw. bestenfalls zu Null zu machen.

→ Siehe Beispiel B5! Bitte selbst studieren (ist eine einfache Aufgabe)