Organisatorisches

- Übung am 7.02.2020: Vorrechnen einer Probeklausur
- Tutorienwoche 10.02. - 14.02. (KW7): Klausurpräparatstunden für EM/KM statt KM-Tutorien
- schriftlicher Test am 18.02.2020: Voraussichtlich um 10:15 Uhr, Infos folgen
Thema: Viskose /reibungsbefähigte Flüssigkeiten

- Tangentialkräfte zwischen Fluidteilen (Reibungskräfte)
- Größe der Tangentialkräfte hängt von der Änderung der Geschwindigkeit normal zur Bewegungsrichtung ab. D.h. $\frac{dv_x}{d_\tau}$
- viskose Flüssigkeiten haften an Wänden
- "Störmungsenergie" wird in andere Energieformen umgewandelt (z.B. Wärme) = D. Bernoulli: $\frac{d}{d_\tau}$ in bisheriger Form nicht anwendbar

Einfaches Modell: Newtonsche Flüssigkeit:

$\tau_x = \eta \frac{dv_x}{d_\tau}$
$\tau = \text{dyn. Viskosität} \left[\frac{\text{kg}}{\text{m} \cdot \text{s}} \right]$
79. Längs einer unter $\alpha = 60^\circ$ gegen die Waagerechte geneigten Platte der Breite $b = 0.5\text{m}$ fließt eine konstante Ölmenge $Q = 31/\text{s}$ als dünner Film der Stärke δ.

Annahme: Es stellt sich ein in x-Richtung konstantes Geschwindigkeits- und Druckprofil ein.

Man berechne

(a) die Geschwindigkeit im Film und
(b) die Filmdicke δ ($\nu = 0.436 \cdot 10^{-4} \text{m}^2/\text{s}$).

\Rightarrow Es wirkt keine Beschleunigung auf die Fluidteilchen, Fluidteilchen ist in Schwerkraft

\[\delta = \Delta x \Delta y \rho g \]

\[
\begin{align*}
\text{in } x \text{- Richtung:} \quad \Sigma F_x &= 0 = p_x y b - p_x y b + \int_{y}^{y+dy} S_{yx} (y+dy) b \Delta x - \int_{y}^{y} S_{yx} (y) b \Delta x + \delta \sin \alpha \\
\int_{y}^{y+dy} S_{yx} - S_{yx} (y) \frac{dy}{dy} &= -\delta g \sin \alpha \\
\frac{d S_{yx}}{dy} &= -\delta g \sin \alpha
\end{align*}
\]

Annahme: Newtonsches Fluid $\dot{S}_{yx} = \eta \frac{d v_x}{dy}$

\[
\begin{align*}
\text{Integration:} \quad \Rightarrow \quad \frac{d v_x}{dy} &= -\frac{\delta g \sin \alpha}{\eta} \quad \frac{d v_x}{dy} = -\frac{\delta g \sin \alpha}{\eta} y + C_1, \quad v_x (y) = -\frac{\delta g \sin \alpha}{2 \eta} y^2 + C_1 y + C_2
\end{align*}
\]

Randbedingungen:

Haftbedingung $v_x (y=0) = 0 \Rightarrow C_2 = 0$

keine Schubspannungen an der Oberfläche: $S_{yx} (y=\delta) = 0 \Rightarrow \frac{d v_x}{dy} (y=\delta) = 0$
b) Filmhöhe bei gegebener Durchflussmenge Q (Volumenstrom)

\[Q = \int v(x) \, dx = \int_{0}^{b} v(x) \, dx = \frac{b \delta}{z} \int_{0}^{\delta} \left(\delta - \frac{\delta}{2} \right) \, dy = \frac{b \delta}{z} \int_{0}^{\delta} \left(\delta - \frac{\delta}{2} \right) \, dy \]

\[Q = \frac{b \delta^3}{3z} \quad \Rightarrow \quad \delta = 3 \sqrt[3]{\frac{3Q}{b \delta \sin \alpha}} \]

gesucht kin. Viskosität $\nu = \frac{\rho}{\delta} \quad \Rightarrow \quad \delta = 3 \sqrt[3]{\frac{3Q\nu}{b \delta \sin \alpha}}$

78. Betrachtet wird ein Rohr (Radius R, Neigungswinkel gegenüber der Horizontalen α), durch das eine Newtonsche Flüssigkeit (dynamische Viskosität η, Dichte ρ) fließt. Der Volumenstrom sei Q. Es soll von laminarer Strömung ausgegangen werden.

Bestimmen Sie das Geschwindigkeitsprofi $v(r)$ bei stationärer Strömung in Abhängigkeit von dem Volumenstrom Q.

Annahme: Nehmen Sie an, dass der Druck p nur von z abhängt.
Geg.: R, Q, η, α, g

Freistrahlen eines zylindrischen, konzentrischen Flüssigkeitsvolumen

\[\zeta = \eta r \Delta z \delta g \]
\(\sigma_{eq} = - \left(p(z) - p(z + \delta z) \right) \frac{R^2}{2} \delta z + \frac{1}{2} \delta z + S \delta \sin \alpha \)

\(\sigma = - R \left(\frac{p(z + \delta z) - p(z)}{\delta z} \right) \frac{dV}{dz} + \frac{1}{2} S \delta \sin \alpha \)

\(S_{eq} = - \delta \sigma R \sin \alpha = \frac{\delta z}{2} \frac{dV}{dz} \) \hspace{1cm} (1)

Materialgesetz: Newtonscher Schubspannungsaspekt

\(S_{eq} = R \frac{dV}{dz} \) \hspace{1cm} (2)

\(\Rightarrow \) Die Schubspannung ist negativ, da \(\frac{dV}{dz} < 0 \).

\((2) \) in (1):

\(\frac{dV}{dz} = \frac{R}{2} \frac{d\sigma}{dz} - \frac{S \delta \sin \alpha}{2} \)

Es soll angenommen werden, dass der Druck in Querschnitt konstant sein \(\Rightarrow p = p(z) \)

\(\Rightarrow \) Für neue Rohre gerechtfertigt

Integration

\(\int_{r_1}^{r_2} \frac{dV}{dz} = \frac{R}{2} \frac{d\sigma}{dz} - \frac{S \delta \sin \alpha}{2} \)

Hauptbedingung: \(v(R) = 0 \Rightarrow C = \left(S \delta \sin \alpha - \frac{d\sigma}{dz} \right) \frac{R^2}{4} \)

\(\Rightarrow \) \(v(r) = \frac{A}{r_2} \left(S \delta \sin \alpha - \frac{d\sigma}{dz} \right) \left(R^2 - r^2 \right) \) \hspace{1cm} (3)

Bestimmung von \(v(r) \) in Abhängigkeit des Volumenstroms \(Q \)

\(Q = \int v(r) \, dz = 2 \pi \int_{0}^{R} v(r) \, r \, dr = \frac{\pi}{2} \left(S \delta \sin \alpha - \frac{d\sigma}{dz} \right) \int_{0}^{R} R^2 - r^2 \, dr \)

\(= \frac{\pi}{8} \left(S \delta \sin \alpha - \frac{d\sigma}{dz} \right) \left(\frac{R^4}{2} - \frac{r^4}{4} \right) \)

\(\Rightarrow Q = \frac{\pi}{8} \left(S \delta \sin \alpha - \frac{d\sigma}{dz} \right) \left(\frac{R^4}{2} - \frac{r^4}{4} \right) \)
\[s_y \sin \alpha - \frac{dF}{dt} = \frac{8Q \nu}{\pi R^4} \]

\[(4) \]

\[(4) \sin(3) \Rightarrow \nu(r) = \frac{\frac{2Q}{4\pi R^2}}{\nu_0} \left(1 - \frac{r^2}{R^2} \right) \]