Lehrveranstaltungsankündigung SoSe 2016

3537 L 012 6 ECTS LP (2VL+2UE)

Indentation Testing of Biological Tissues

Mittwoch: 10 - 12 Uhr, Raum M 123

Course Goals
The course develops a mathematical modeling approach to capture the indentation phenomena in biomedical materials and applies this to the analysis of dynamic and impact deformation of biological tissues. Basic knowledge and skills to develop the design of indentation testing techniques for viability identification of living tissues and biological materials.

Prerequisites
a) Obligatory: knowledge of mechanics and higher mathematics, possession of basic knowledge of mathematical models of physical phenomena (solid mechanics, viscoelasticity)
b) Desirable: elements of mathematical physics and analytical methods

Content
Elastic and viscoelastic materials; Biphasic material; Confined and unconfined compression tests; Frictionless flat-ended and spherical indentation; Thickness effect in indentation; Indentation of relatively thin elastic layers; Rebound indentation test; Dynamic indentation test; Vibration indentation test; Fung’s quasi-linear viscoelastic model; Impact testing and Hunt–Crossley model; Multi-scale indentation testing.

Literature