Magnetopiezoelastic energy harvesting driven by random excitations

Grzegorz Litak
Department of Applied Mechanics, Lublin University of Technology

Energy harvesting of ambient vibration is important for remote devices, for example in structural health monitoring [1]. Completely wireless sensor systems are desirable and this can only be accomplished by using batteries and/or harvested energy.

This lecture considers a nonlinear piezomagnetoelectric energy harvester driven by stationary Gaussian white noise[2]. The increase the energy generated by this device has been demonstrated for harmonic excitation with slowly varying frequency in simulation, and validated by experiment [3-4]. The present approach considers the simulated response of this validated model to random base excitation and shows that the system exhibits a stochastic resonance. If the variance of the excitation were known then the device may be optimized to maximize the power harvested, even under random excitation.